為了有效的實(shí)現(xiàn)分類識別,就要對原始圖像數(shù)據(jù)進(jìn)行變換,得到最能反映分類本質(zhì)的圖像特征。
圖像特征是指圖像的原始特征或?qū)傩。每一幅圖像都有其本身的特性,其中有些是視覺直接感受到的自然特征,如亮度、邊緣、紋理或色彩等;有些是需要通過變換或測量才能得到的人為特征,如譜、直方圖等。為了正確的對缺陷圖像進(jìn)行有效識別,需要從圖像中提取有效的數(shù)據(jù)或信息,生成非圖像的描述或表示,如數(shù)值、符號等,即抽取圖像特征。一般地,把原始數(shù)據(jù)組成的空間叫做“測量空間”,把分類識別賴以進(jìn)行的空間叫做“特征空間”。通過特征提取,把維數(shù)較高的測量空間中表示的模式轉(zhuǎn)化在維數(shù)較低的特征空間中表示的模式,從而為圖像識別提供數(shù)據(jù)樣本。
一、特征選取依據(jù)
對于待識別的織物缺陷圖像,通過相關(guān)的處理對其經(jīng)過分割和邊緣提取后,可以得到圖像的原始特征。但是原始特征的數(shù)量很大,圖像樣本是處于一個(gè)高維空間中,如何從眾多的特征中選出一些最有效的特征以達(dá)到降低特征空間維數(shù)的目的,是特征選擇和提取的基本任務(wù)。在樣本數(shù)量不是很多的情況下,用很多特征進(jìn)行分類器的設(shè)計(jì),從計(jì)算復(fù)雜程度和分類器性能來看都是不合適的。因此研究如何把高維特征空間特征轉(zhuǎn)化到低維空間特征以便有效地識別圖像就很關(guān)鍵。例如,通過攝像機(jī)把一個(gè)物體轉(zhuǎn)換為一個(gè)二維灰度陣列。一個(gè) 256×256 灰度陣列圖像相當(dāng)于 256×256 維測量空間中的一個(gè)點(diǎn),不便于識別,更重要的是這樣一種描述并不能直接反映圖像的本質(zhì)。
目前,幾乎還沒有解析的方法能夠指導(dǎo)特征的選擇,一般情況下,根據(jù)經(jīng)驗(yàn)和相關(guān)理論基礎(chǔ)先列出一些可能的特征表,然后用特征排序方法計(jì)算不同特征的識別效率。利用結(jié)果對表進(jìn)行刪減,以選取最優(yōu)的特征組合。具體地,選擇特征的依據(jù)如下:
可區(qū)別性。對于屬于不同類的圖像而言,它們的特征應(yīng)具有明顯的差異
可靠性。對于同類圖像,特征值應(yīng)該比較接近。
獨(dú)立性好。所選擇的特征值之間應(yīng)彼此不相關(guān)。需要注意的是,有時(shí)相關(guān)性很高的特征組合起來可以減少噪聲干擾,但它們一般不作為單獨(dú)的特征使用。
數(shù)量少。圖像識別系統(tǒng)的復(fù)雜程度隨著系統(tǒng)維數(shù)(特征個(gè)數(shù))成正比增加。特征數(shù)量如果過多,雖然識別的效果會更好一些,但是識別時(shí)計(jì)算更加耗時(shí),難度更大。
二、織物缺陷的主要類型
本文主要針對織物缺陷主要的四類疵點(diǎn)進(jìn)行檢測,分別是:劈縫、斷經(jīng)、經(jīng)線粘連和漿斑。以下是四類疵點(diǎn)的大致產(chǎn)生原因和四類疵點(diǎn)各自的特點(diǎn)情況。
1)劈縫:劈縫是相鄰的兩根經(jīng)線由于緯線連續(xù)斷開而形成的,一般在大于等于4cm長度內(nèi)沒有緯線鏈接,疵點(diǎn)的寬度一般大于四厘米,約為20跟以上經(jīng)線的寬度,長度一般約為整幅圖像的一半以上,在均勻燈光的照射下,形成一條亮紋,所產(chǎn)生的亮度要比正?椢锏母摺?椢锱p缺陷圖像如圖1所示:
圖 1 織物劈縫缺陷圖像
2)斷經(jīng):斷經(jīng)指的是織物的一股經(jīng)線脫落或者斷開,又稱抽斷經(jīng)。疵點(diǎn)的寬度約為一到兩根經(jīng)線的寬度,長度一般超過整幅圖像的一半,通常為整幅圖像的長度。在均勻燈光的照射下,形成一條亮紋,所產(chǎn)生的亮度要比正?椢锏母。織物斷經(jīng)缺陷圖像如圖2所示:
圖2 織物斷經(jīng)缺陷圖像
3)經(jīng)線粘連:這種缺陷是由于相鄰的兩根經(jīng)線因?yàn)楣袒说慕z液粘連在一起而形成的一種缺陷。疵點(diǎn)的寬度約為一到兩根經(jīng)線的寬度,長度一般超過整幅圖像的一半,通常為整幅圖像的長度。在均勻燈光的照射下,形成一條亮紋,所產(chǎn)生的亮度要比正常織物的高。織物的經(jīng)線粘連缺陷圖像如圖3所示:
圖3 織物經(jīng)線粘連缺陷圖
4)漿斑:形成這種織物缺陷的原因主要是干燥區(qū)的溫度、酚醛乳液的品質(zhì)、吸膠器的更換、干燥區(qū)的排風(fēng)量以及干燥區(qū)爐內(nèi)滾筒的結(jié)構(gòu)等,漿斑又稱為膠斑,疵點(diǎn)區(qū)域的大小沒有固定的形狀,面積比較小,一般在四到十平方厘米。經(jīng)向和緯向長度通常有一定的區(qū)別,疵點(diǎn)的區(qū)域部分比較光滑,一般是連通的,在均勻燈光的照射下,所產(chǎn)生的亮度要比正常織物的低?椢餄{斑缺陷如圖4 所示:
圖4 織物漿斑缺陷圖像
三、圖像特征分析的常用方法
圖像特征分析的方法有很多種,但具體到每幅圖像,我們只會根據(jù)該幅圖像的特有性質(zhì)而選擇其中的一種或者幾種方法對其特征進(jìn)行分析,圖像的特征主要有圖像的形狀特征、圖像的顏色特征、圖像的紋理特征等。
1)圖像的形狀特征分析:經(jīng)過圖像預(yù)處理和圖像分割,我們就可以得到目標(biāo)區(qū)域的大小及邊緣信息,從而得到疵點(diǎn)部分的大致形狀。通過邊界、骨架及區(qū)域三種信息就可以來反映圖像的目標(biāo)信息。通常,人們關(guān)心的主要是目標(biāo)信息的形狀,而不是其他信息。所以,我們可以把圖像的邊界或者內(nèi)部賦值“1”,其他不感興趣的部分賦值“0”,這樣即可形成一幅可以清晰顯示出目標(biāo)形狀信息的二值圖像。目標(biāo)信息的特征量有長度、面積、周長、寬度、長寬比等,我們可以通過這些特征量來對疵點(diǎn)進(jìn)行判別以及為以后的疵點(diǎn)分類提供較好的幫助。形狀特征是描述圖像內(nèi)容的另一個(gè)重要特征,是計(jì)算機(jī)視覺和模式識別研究的一個(gè)基本問題。但由于物體形狀自動(dòng)獲取比較困難,基于形狀的檢測一般僅限于非常容易識別的物體。
2)圖像的顏色特征分析:圖像的顏色特征分析是圖像統(tǒng)計(jì)特征分析中最常用的一種,主要RGB和HIS兩類彩色坐標(biāo)系統(tǒng)。前者是面向已經(jīng)系統(tǒng)的,相對簡單,而后者主要是用來描述顏色特征。在顏色特征分析中,我們一般先把 RGB 空間轉(zhuǎn)換為 HIS 空間,主要是因?yàn)樵?RGB 彩色坐標(biāo)系中,存在著很多的不足。第一,RGB 彩色坐標(biāo)系對不同的色彩不能用準(zhǔn)確的數(shù)值來表示,進(jìn)而很難進(jìn)行定量分析;第二,RGB 彩色坐標(biāo)系對含有較高相關(guān)性的圖像擴(kuò)展對比度時(shí),只能擴(kuò)大圖像的明亮程度,而對圖像的色調(diào)差異的增強(qiáng)沒什么效果;第三RGB彩色坐標(biāo)系不容易控制圖像分析的結(jié)構(gòu)。而 HIS 母性則可以定量的描述圖像的顏色特征。
3)圖像的紋理特征分析:在圖像處理分析中,紋理結(jié)構(gòu)的特征分析占據(jù)了很大地位。它具有多種特征,主要有局部特性不斷重復(fù)、圖像區(qū)域內(nèi)紋理總體均勻和非隨機(jī)排列等,常用的紋理特征提取方法也很多,比如模型方法、統(tǒng)計(jì)方法、幾何方法、信號處理方法及結(jié)構(gòu)方法等。
四、織物缺陷圖像識別算法研究
圖像識別簡而言之就是要把一種研究對象,根據(jù)其相關(guān)特征進(jìn)行識別并分類。其識別過程如圖5 所示,由三個(gè)主要階段組成。第一個(gè)階段稱為圖像分割或物體分離階段;第二個(gè)階段稱為特征提取階段;第三個(gè)階段是分類。
圖5 圖像識別過程
目前常用的圖像識別方法主要有:統(tǒng)計(jì)模式識別、結(jié)構(gòu)模式識別和人工神經(jīng)網(wǎng)絡(luò)識別方法等。統(tǒng)計(jì)模式的識別方法相對比較成熟,對模式不太復(fù)雜的應(yīng)用已經(jīng)很成功,但它不能反映模式的結(jié)構(gòu)特性,且概率表示形式實(shí)用上也存在一定的局限性。結(jié)構(gòu)模式識別方法中一個(gè)模式被看成一個(gè)句子,反映了模式的結(jié)構(gòu)特性;诰浞ńY(jié)構(gòu)的圖像分類被描述為對句子的分析,其過程比較方便,且抗圖像畸變的能力較強(qiáng),但抽取有效的結(jié)構(gòu)基元比較困難,并常引起某些誤判。人工神經(jīng)網(wǎng)絡(luò)識別法由于神經(jīng)網(wǎng)絡(luò)的自組織、自適應(yīng)學(xué)習(xí)的功能,大大放松了傳統(tǒng)識別方法所需的約束條件。相對于其它方法,神經(jīng)網(wǎng)絡(luò)在圖像識別中有 3 點(diǎn)優(yōu)勢:①神經(jīng)網(wǎng)絡(luò)對問題的先驗(yàn)知識要求較少;②可以實(shí)現(xiàn)對特征空間較為復(fù)雜的劃分;③適合用高速并行處理系統(tǒng)實(shí)現(xiàn)。
織物缺陷圖像分類問題可以劃為圖像的模式識別問題,模式識別方法主要分為基于理論判別和基于結(jié)構(gòu)的判別。理論判別主要使用的是定量描繪子(包括長度、面積、紋理等等)描述的各種模式;結(jié)構(gòu)判別主要由定性的描繪子描述的各種模式。
織物缺陷圖像識別中應(yīng)用較多的神經(jīng)網(wǎng)絡(luò)有自組織特征映射(SOM)神經(jīng)網(wǎng)絡(luò)、模糊神經(jīng)網(wǎng)絡(luò)和 BP 神經(jīng)網(wǎng)絡(luò),其中最常用的是 BP 神經(jīng)網(wǎng)絡(luò)。本文中織物缺陷圖像識別采用基于 BP 神經(jīng)網(wǎng)絡(luò)的理論判別的方法。
五、小結(jié)
本文主要介紹了基于 BP 神經(jīng)網(wǎng)絡(luò)的織物疵點(diǎn)分類識別。本章首先對BP神經(jīng)網(wǎng)絡(luò)做了理論介紹,然后對織物疵點(diǎn)分類的 BP 網(wǎng)絡(luò)進(jìn)行了構(gòu)建,詳細(xì)說明了網(wǎng)絡(luò)構(gòu)建中的神經(jīng)元數(shù)和訓(xùn)練方法的選擇。最后采用測試樣本對識別網(wǎng)絡(luò)進(jìn)行了測試。