亚洲mv大片欧洲mv大片入口,国产粉嫩无码一区二区三区,国内精品自产拍在线观看91,久久久亚洲欧洲日产国码二区,中文字幕人妻久久一区二区三区

常州機(jī)器視覺培訓(xùn)

常州上位機(jī)軟件開發(fā)

常州工業(yè)機(jī)器人編程設(shè)計(jì)培訓(xùn)

常州PLC培訓(xùn)

常州PLC

常州PLC編程培訓(xùn)

常州電工培訓(xùn)

常州和訊plc培訓(xùn)中心歡迎您!
當(dāng)前位置:網(wǎng)站首頁(yè) > 新聞中心 新聞中心
17個(gè)機(jī)器學(xué)習(xí)的常用算法(上)-常州上位機(jī)培訓(xùn),常州機(jī)器視覺培訓(xùn)
日期:2024-3-26 16:13:25人氣:  標(biāo)簽:常州上位機(jī)培訓(xùn) 常州機(jī)器視覺培訓(xùn)

根據(jù)數(shù)據(jù)類型的不同,對(duì)一個(gè)問題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法的學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個(gè)不錯(cuò)的想法,這樣可以讓人們?cè)诮:退惴ㄟx擇的時(shí)候考慮能根據(jù)輸入數(shù)據(jù)來選擇最合適的算法來獲得最好的結(jié)果。

1711347423.jpg

1. 監(jiān)督式學(xué)習(xí):

5.jpg

在監(jiān)督式學(xué)習(xí)下,輸入數(shù)據(jù)被稱為“訓(xùn)練數(shù)據(jù)”,每組訓(xùn)練數(shù)據(jù)有一個(gè)明確的標(biāo)識(shí)或結(jié)果,如對(duì)防垃圾郵件系統(tǒng)中“垃圾郵件”“非垃圾郵件”,對(duì)手寫數(shù)字識(shí)別中的“1“,”2“,”3“,”4“等。在建立預(yù)測(cè)模型的時(shí)候,監(jiān)督式學(xué)習(xí)建立一個(gè)學(xué)習(xí)過程,將預(yù)測(cè)結(jié)果與“訓(xùn)練數(shù)據(jù)”的實(shí)際結(jié)果進(jìn)行比較,不斷的調(diào)整預(yù)測(cè)模型,直到模型的預(yù)測(cè)結(jié)果達(dá)到一個(gè)預(yù)期的準(zhǔn)確率。監(jiān)督式學(xué)習(xí)的常見應(yīng)用場(chǎng)景如分類問題和回歸問題。常見算法有邏輯回歸(Logistic Regression)和反向傳遞神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)


2. 非監(jiān)督式學(xué)習(xí):

6.jpg

在非監(jiān)督式學(xué)習(xí)中,數(shù)據(jù)并不被特別標(biāo)識(shí),學(xué)習(xí)模型是為了推斷出數(shù)據(jù)的一些內(nèi)在結(jié)構(gòu)。常見的應(yīng)用場(chǎng)景包括關(guān)聯(lián)規(guī)則的學(xué)習(xí)以及聚類等。常見算法包括Apriori算法以及k-Means算法。


3. 半監(jiān)督式學(xué)習(xí):

7.png

在此學(xué)習(xí)方式下,輸入數(shù)據(jù)部分被標(biāo)識(shí),部分沒有被標(biāo)識(shí),這種學(xué)習(xí)模型可以用來進(jìn)行預(yù)測(cè),但是模型首先需要學(xué)習(xí)數(shù)據(jù)的內(nèi)在結(jié)構(gòu)以便合理的組織數(shù)據(jù)來進(jìn)行預(yù)測(cè)。應(yīng)用場(chǎng)景包括分類和回歸,算法包括一些對(duì)常用監(jiān)督式學(xué)習(xí)算法的延伸,這些算法首先試圖對(duì)未標(biāo)識(shí)數(shù)據(jù)進(jìn)行建模,在此基礎(chǔ)上再對(duì)標(biāo)識(shí)的數(shù)據(jù)進(jìn)行預(yù)測(cè)。如圖論推理算法(Graph Inference)或者拉普拉斯支持向量機(jī)(Laplacian SVM.)等。


4. 強(qiáng)化學(xué)習(xí):

8.jpg

在這種學(xué)習(xí)模式下,輸入數(shù)據(jù)作為對(duì)模型的反饋,不像監(jiān)督模型那樣,輸入數(shù)據(jù)僅僅是作為一個(gè)檢查模型對(duì)錯(cuò)的方式,在強(qiáng)化學(xué)習(xí)下,輸入數(shù)據(jù)直接反饋到模型,模型必須對(duì)此立刻作出調(diào)整。常見的應(yīng)用場(chǎng)景包括動(dòng)態(tài)系統(tǒng)以及機(jī)器人控制等。常見算法包括Q-Learning以及時(shí)間差學(xué)習(xí)(Temporal difference learning)


在企業(yè)數(shù)據(jù)應(yīng)用的場(chǎng)景下, 人們最常用的可能就是監(jiān)督式學(xué)習(xí)和非監(jiān)督式學(xué)習(xí)的模型。在圖像識(shí)別等領(lǐng)域,由于存在大量的非標(biāo)識(shí)的數(shù)據(jù)和少量的可標(biāo)識(shí)數(shù)據(jù), 目前半監(jiān)督式學(xué)習(xí)是一個(gè)很熱的話題。而強(qiáng)化學(xué)習(xí)更多的應(yīng)用在機(jī)器人控制及其他需要進(jìn)行系統(tǒng)控制的領(lǐng)域。


5. 算法類似性

根據(jù)算法的功能和形式的類似性,我們可以把算法分類,比如說基于樹的算法,基于神經(jīng)網(wǎng)絡(luò)的算法等等。當(dāng)然,機(jī)器學(xué)習(xí)的范圍非常龐大,有些算法很難明確歸類到某一類。而對(duì)于有些分類來說,同一分類的算法可以針對(duì)不同類型的問題。這里,我們盡量把常用的算法按照最容易理解的方式進(jìn)行分類。


6. 回歸算法:

9.jpg

回歸算法是試圖采用對(duì)誤差的衡量來探索變量之間的關(guān)系的一類算法;貧w算法是統(tǒng)計(jì)機(jī)器學(xué)習(xí)的利器。在機(jī)器學(xué)習(xí)領(lǐng)域,人們說起回歸,有時(shí)候是指一類問題,有時(shí)候是指一類算法,這一點(diǎn)常常會(huì)使初學(xué)者有所困惑。常見的回歸算法包括:最小二乘法(Ordinary Least Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應(yīng)回歸樣條(Multivariate Adaptive Regression Splines)以及本地散點(diǎn)平滑估計(jì)(Locally Estimated Scatterplot Smoothing)


7. 基于實(shí)例的算法

10.jpg

基于實(shí)例的算法常常用來對(duì)決策問題建立模型,這樣的模型常常先選取一批樣本數(shù)據(jù),然后根據(jù)某些近似性把新數(shù)據(jù)與樣本數(shù)據(jù)進(jìn)行比較。通過這種方式來尋找最佳的匹配。因此,基于實(shí)例的算法常常也被稱為“贏家通吃”學(xué)習(xí)或者“基于記憶的學(xué)習(xí)”。常見的算法包括 k-Nearest Neighbor(KNN), 學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ),以及自組織映射算法(Self-Organizing Map , SOM)


8. 正則化方法

11.png

正則化方法是其他算法(通常是回歸算法)的延伸,根據(jù)算法的復(fù)雜度對(duì)算法進(jìn)行調(diào)整。正則化方法通常對(duì)簡(jiǎn)單模型予以獎(jiǎng)勵(lì)而對(duì)復(fù)雜算法予以懲罰。常見的算法包括:Ridge Regression,Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網(wǎng)絡(luò)(Elastic Net)。


9. 決策樹學(xué)習(xí)

12.png

決策樹算法根據(jù)數(shù)據(jù)的屬性采用樹狀結(jié)構(gòu)建立決策模型, 決策樹模型常常用來解決分類和回歸問題。常見的算法包括:分類及回歸樹(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機(jī)森林(Random Forest), 多元自適應(yīng)回歸樣條(MARS)以及梯度推進(jìn)機(jī)(Gradient Boosting Machine, GBM)


10. 貝葉斯方法

13.jpg

貝葉斯方法算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。常見算法包括:樸素貝葉斯算法,平均單依賴估計(jì)(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。


11. 基于核的算法

14.jpg

基于核的算法中最著名的莫過于支持向量機(jī)(SVM)了;诤说乃惴ò演斎霐(shù)據(jù)映射到一個(gè)高階的向量空間, 在這些高階向量空間里, 有些分類或者回歸問題能夠更容易的解決。常見的基于核的算法包括:支持向量機(jī)(Support Vector Machine, SVM), 徑向基函數(shù)(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等 


12.聚類算法

15.png

聚類,就像回歸一樣,有時(shí)候人們描述的是一類問題,有時(shí)候描述的是一類算法。聚類算法通常按照中心點(diǎn)或者分層的方式對(duì)輸入數(shù)據(jù)進(jìn)行歸并。所以的聚類算法都試圖找到數(shù)據(jù)的內(nèi)在結(jié)構(gòu),以便按照最大的共同點(diǎn)將數(shù)據(jù)進(jìn)行歸類。常見的聚類算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。


13. 關(guān)聯(lián)規(guī)則學(xué)習(xí)

16.jpg

關(guān)聯(lián)規(guī)則學(xué)習(xí)通過尋找最能夠解釋數(shù)據(jù)變量之間關(guān)系的規(guī)則,來找出大量多元數(shù)據(jù)集中有用的關(guān)聯(lián)規(guī)則。常見算法包括 Apriori算法和Eclat算法等。


14. 人工神經(jīng)網(wǎng)絡(luò)

17.jpg

人工神經(jīng)網(wǎng)絡(luò)算法模擬生物神經(jīng)網(wǎng)絡(luò),是一類模式匹配算法。通常用于解決分類和回歸問題。人工神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)的一個(gè)龐大的分支,有幾百種不同的算法。(其中深度學(xué)習(xí)就是其中的一類算法,我們會(huì)單獨(dú)討論),重要的人工神經(jīng)網(wǎng)絡(luò)算法包括:感知器神經(jīng)網(wǎng)絡(luò)(Perceptron Neural Network), 反向傳遞(Back Propagation), Hopfield網(wǎng)絡(luò),自組織映射(Self-Organizing Map, SOM)。學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ)


15. 深度學(xué)習(xí)

18.jpg

深度學(xué)習(xí)算法是對(duì)人工神經(jīng)網(wǎng)絡(luò)的發(fā)展。在近期贏得了很多關(guān)注, 特別是百度也開始發(fā)力深度學(xué)習(xí)后, 更是在國(guó)內(nèi)引起了很多關(guān)注。   在計(jì)算能力變得日益廉價(jià)的今天,深度學(xué)習(xí)試圖建立大得多也復(fù)雜得多的神經(jīng)網(wǎng)絡(luò)。很多深度學(xué)習(xí)的算法是半監(jiān)督式學(xué)習(xí)算法,用來處理存在少量未標(biāo)識(shí)數(shù)據(jù)的大數(shù)據(jù)集。常見的深度學(xué)習(xí)算法包括:受限波爾茲曼機(jī)(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網(wǎng)絡(luò)(Convolutional Network), 堆棧式自動(dòng)編碼器(Stacked Auto-encoders)。


16. 降低維度算法

19.jpg

像聚類算法一樣,降低維度算法試圖分析數(shù)據(jù)的內(nèi)在結(jié)構(gòu),不過降低維度算法是以非監(jiān)督學(xué)習(xí)的方式試圖利用較少的信息來歸納或者解釋數(shù)據(jù)。這類算法可以用于高維數(shù)據(jù)的可視化或者用來簡(jiǎn)化數(shù)據(jù)以便監(jiān)督式學(xué)習(xí)使用。

常見的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS),  投影追蹤(Projection Pursuit)等。


17. 集成算法:

20.jpg

集成算法用一些相對(duì)較弱的學(xué)習(xí)模型獨(dú)立地就同樣的樣本進(jìn)行訓(xùn)練,然后把結(jié)果整合起來進(jìn)行整體預(yù)測(cè)。集成算法的主要難點(diǎn)在于究竟集成哪些獨(dú)立的較弱的學(xué)習(xí)模型以及如何把學(xué)習(xí)結(jié)果整合起來。


這是一類非常強(qiáng)大的算法,同時(shí)也非常流行。常見的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進(jìn)機(jī)(Gradient Boosting Machine, GBM),隨機(jī)森林(Random Forest)。


本文網(wǎng)址:
下一篇:沒有資料

相關(guān)信息:
版權(quán)所有 CopyRight 2006-2017 江蘇和訊自動(dòng)化設(shè)備有限公司 常州自動(dòng)化培訓(xùn)中心 電話:0519-85602926 地址:常州市新北區(qū)府琛商務(wù)廣場(chǎng)2號(hào)樓1409室
蘇ICP備14016686號(hào)-2 技術(shù)支持:常州山水網(wǎng)絡(luò)
本站關(guān)鍵詞:常州PLC培訓(xùn) 常州PLC編程培訓(xùn) 常州PLC編程 常州PLC培訓(xùn)班 網(wǎng)站地圖 網(wǎng)站標(biāo)簽
在線與我們?nèi)〉寐?lián)系
亚洲mv大片欧洲mv大片入口,国产粉嫩无码一区二区三区,国内精品自产拍在线观看91,久久久亚洲欧洲日产国码二区,中文字幕人妻久久一区二区三区